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13. ABSTRACTY (AMaxmum 200 words)

Cyclostationary processes are an important class of nonstationary pro esses. in this report we
consider nonparametric estimation of the cyclic cross-spoctrum. A periodogram- sased estimator is
studied and its asymptatic behavior characterized. This exiends the recent univariate work of
Dandawate and Giannakis to the multivariate case. T’ » resulis are useful for a variety of multi-sensor
cyclostationary signal processing scenarios, such as bearing estimation.
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1. Introduc tion

, In this report we study the statistics of a periodogram-based estimate of

the cyclic cross-spectrum. Cur muliivariate work is based heavily upon the

univariate work of Darndawate and Giannakis [1,2], in which they devel- ,
oped the theory of periodogram-based estimates of the cyclic spectrum of .
a single cyclostationary process. Their work extended conveniional spec- '
trum estimation theory for stationary time series to the cyclostationary
case, especially rely ng on the exposition of Brillinger [3] and Brillinger
and Rosenblatt [4,5]. We simply extend the work of Dandawate and
Giannakis to the multivariate case. ‘The present work can thus be viewed
as ¢ generalization of the muitivariate cross-periodogram spectrum estima-
tion theory for stationary processes as put forward by Brillinger {3].

e

The primary motivation for extending to the multivariate case is to handle
multiple ume series problems. as might anise in multi-sensor signal proc- ,
_ escing scenarios Because of the dimensiorality difficulties involved we -
- focus on the second-order cross-spectrum case and do not consider esti-
' mates of higher order cyclic cross-cumulants or polyspectra, while noting
that the univariaie cyclostationary theory has been extended to include
arbitrary kth-order ¢ velic stausacs [1].

Cyclic (cross)-spectrum estimates based on the periodogram are particu-
iariy appealing due 1o their nonparametric nawre, and because they allow
- the use of the fast Fourier tansform (FFT) algorithm, which speeds

: computation. It is shown that such estiinztes of the « yclic cross-spectrum
- are consistent and 2sympiotically nomaily distributed undger mild condi-
tions on the time series. This will allow for optimal ciiteria tc be devel-
oped for detection and estimation schemes tased on the cyclic cross-
‘ spectrum. For example, the optimal estimation of the time difference of
armival between two sersors is key for bearing estimation schemes, and -
this delay can be estimated for cyclostationary signals via the cyclic cross- a
specaum. Thus, the results of this report will prove useful in the analysis o
of such multi-sensor scenanos.

2. Background

Consider the vector-valued time series X(1). fort =0, 1,2, . .., with real-
valued components z,(t), 2 = 1. ... ,r. These might arise as the outputs of
multiple sensors, for example. We assume without loss of gencrality that
Elz (t)] = 0 for each choice of ¢. With z,(t) and r (1) components ~f X(1),
we define their time-varying cross-covariance to be

ac

(85 7) 2 Elz,(t+ m)1,(t)). (N




If 2,(t) and z(¢) are stationary, then (L 7 = ¢;5(7) is the conventional
cross-covariance and exhibits no time dependence. Backgiound on the

stetionary cross-covariance can be found, for example, in Priestly :
[6, chapt. 9]. If ,(1) and z (t) are cyclostationary. then ¢, (t; 7) is periodic
(or almost periodic) in ¢, so for each fixed lag 7 the time-varying covari-
ance can be expanded in a Fourier series (e.g., see Besicovitch [7]). The
resulting Fourier series coefficients are the cyclic cross-covariance, given by

T-1
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with a called the cvele frequency. In analogy with the stationary case, we
may also consider the Fourier transform of ¢, (¢: 7) and C,,(w: 7) with
respect to 7. vielding, respectively, the time-varving spectrum

A e s
syltw) = L Gyt m)e™ 7
=-oc

and the ~yclic spectrum, given by

e

T—?::x: (“J(O:T){ ‘J‘lf- (4)
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To obtain the “auto” versions of these functions we simply set t = 7 so that,
for example, ¢, (t: 7) ¢,(t; 7) is the time-varying autocorrelation.

Note that ', (0; 7) is thie correlation as conventionally defined for station-
ary processes. Similarly, S, (0. 4) is the power spectrum, defined as the
Fourner ransform of (',,(G: 7). Thus, the staustics of stationary processes
are a special case of cyclostationary statistics with cycle frequency o =0,
which corresponds to periodic statistics with period zero. Note also that
C,(a 1) and S, (a; v) are ime-mvarant quanttes, which is a fundamen-
tal reason why cyclic statistics are an important tool for analysis of
nonstationary proc. sses.

In this report we analyze the properties of a periodogram-be .ed estimate
of S, (a; w). We make use of the finite Fourier transform of z (1), defined
s
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and the ovclic cross-periodiagram, defined as
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where * denotes complex conjugate. Since z,(1) is real valued, this may be
written

1 )

The definition of equation (6) is a generalization of the un variate version
of the definition used by Hurd [8].

In deriving the covariance of ]i(jT)(a w), we make use of higher order

cumulants. All of the above definitions may be generalized to higher order
cumulant cases. The “‘auto” higher order versions are defined by
Dandawate [1]. Under the assumption that E{lz,(¢)IF} < oo, we define the
Joint cumulans of order k of X(t) as,}

A .
Copan by, k) = cum{xa, (8)). - . To (L)}, (8)

for k 2 2. In the case of stationary processes
(‘01.---.09.():1) Y i‘k) - cﬂl.-“.uk(rl [ ka—l)e (9)

while in the time-varying case, in analogy with equation (1), we explicitly

maintain the time dependence as

Ca,. ak(tl-"W'k) = Cq,, .d‘{{:r\V'"Tk'l)‘ (10‘)
For X(t) cyclostationary then, in extension of equation (2), we define,
N T-1
C (7, .Tkq) = lim Y ¢ Gy, Troy eI ,
a1, .a.,\(v IR k l) T—-OC%(') a, -Gk( 1 k 1) (ll)
to be the kth-order cyclic cumulant of X(t) at cycle frequency a. The
tme-varying cumulant spectrum (polyspactrum) is written
3 s 5 o
. ¢ - . . . == cobwr Tk
Say, .ﬂn‘.t"""lf""“"j‘f_l): 5.: 5_. Ca,, .(u(t-‘rl-""'rk—l)(’ JTie ek T s)‘ 12)
= e 1T X L
and the cvclic cunulant spectrum is defincd as
x oK
» . o . . (a1 T+ bwr 1 Th )
5(“ ,uk(avw'h""“‘}k"l): Z . Z (u" -ﬂA((I‘rl¥.'-~Tk——l)¢ 7l Ty who1Th 1) (13)
Ty =X ’

‘See Brillinger (3, p. 21]. We use the notation Ca,. ap (10 denote arbitrary higher order cumulants of kth order,
rather than using ¢, (). For fixed order we retain the previous notation. so, for example, we use ¢, () rather than
calﬂ;‘-) in the second-order case.
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3. Cyclic Cross-Periodogram
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In this section we explore the cyclic cross-periodogram 1,(,7 ‘)(a; w)s
defined by equation (6), as a potential estimate of the cyclic cross-
spectrum S, (a: w). The asympiotic properties of 11-(]7")(01; w) are sutnma-
rized in a theorem, which shows that 11-(]-7 )(u‘; w) does not result in consis-
tent estimates of 5, (a; w). This is analogous to the stationary case, where
the conventional cross-periodogram results in inconsistent estimates of the
power spectrumn, ¢.g., see Priestly [6, chapt. 9]. As is well known in the
statiorary case, the key to obtaining consistent estimates 1S smoothing the
periodogram. As shown by Dandawate and Giannakis, this 1dea extends to
the cvclic case as well [1,2].

To begin our study of _/'fJT)(a-; w). we st :te assumptions on the time series
X(2). These mixing conditions insure that samples of X(¢) thar are well
separated in time are becoming statistically independent. For a general
discussion of mixing conditions, see Brillinger 3, chapt. 1].

Assumption la

I(rm.-.ﬂt 1(t:'7'1.--'~7'k-|ﬂ<0c, f0r2=1.~<.k—— thVk (14‘
Assumption lb

ngl‘rllc,](t:r){ < oc. Vi (15)
Assumption a

! STy T ) X - 1o k=1, Ya.vk.

{Ca. oy Q71 ko x. for1 -1 k — 1.Ya.vk (16)
Assumption 2b

o IrliC i) < X Ve, i

Note that Assumptions Ib and 2b are the second-order cases (k = 2) of the
mote general Assumptions 1a and 2a, respectively. For clarity we have
included Assumptions ib and 2b so we can refer specifically to the sec-
ond-order case when desired. We proceed by stating a lemmiz that charac-
terizes the rate of convergence (as T - o0) of the cyclic cumulant spec-
trum. In the following the notation a, = (X(b,) means that Iz, /b, ! is
bounded for n sufficiently large, e.g., see Brillinger |3, chapt. Z|.




Lemma 1 If Assumption 1a holds. then

iy . (r-n (71 !
v 4 Sapa (LW wea) - 30 N el g eI T )
. n=={1" 1 % = (T=1 I
g =O(T™"). ¢
(18)
For the case of £ = 2, Lemma 1 reduces to the following corollary.
Corollary 1 If Assumnprion 1b hoids, then
s (-1
bl silw)— Y oG =0T N g
o 7= (T 1) (19)
LY The next lemma describes the rate of convergence of the finite Fourier

transform of the kth-oncer iime-varying cumulant spectrum. We are gener-
alizing Theorem 4.3.2 of Brillinger [3]. The proof is similar to that used by
Dandawate, which is a generalization of the stationary case of Brillinger
anid Rosenblatt [4].

Lemma 2 If assumprion 2a holds. then

T-1
wm{‘x’ép(wl)’ T "Yép (U.)k)} = E S'llr",ak (t; Wi, Way oo 7wk—])e‘3(wl+m+‘u")t + O(l) a (20)
t=0

For the case of k = 2, lemma 2 reduces to the following corollary.

Corollary 2 If asumption 2b holds then,

v T_l .
Cu"'n‘{Xi(‘ )(WO)a X_;T) (w:)} = Z Si; (8 WO)e_J(wowm +O(1). (1)
t=0

We are now prepared to state the main vesult of this section in the follow-
- ing theorem that describes the asymptotic bias and variance of the cyclic
: ) cross-periodogram Ii(jT ) (v; ). The proof of the theorem relies on the

' above lemmas.

Theorem I (Bias and v riance of the cyclic cross-periodogram).

. Suppose X(t) is cyclostationary with zero mean as defined in section 2. If
Skl Wy, wy, W) exists and is finite, and Assumptions 1 and 2 hold, then

Sylan) = 71‘21(30 E[[:’()n (o w}],

(22)




and

(r . . \
hmum{’ (w1 () Salw  pdSpla wi g dia w)

=X

t S,[(LL’ oy - ,H'\ LL-‘)-\;JK»(()' ARV F M8 w'). 0 (23)

It is apparent {from equation (22) that 1‘ (n @) 18 asymptotically un-
biased. However, from equation (23) we conclude that, in general,

I(' ) (@ w) has non-zero covariance and is therefore an inconsistent esti-
mam of S, S «). A consistent esum.uur will subsequently be obtainaed
based on a smoothed version or 1L («r; w). Before we do ihis we consider
some special cases of equation (2 1) in the next section, and i1 panticular
we develop the asymptotic variance-covariance raatrix for 11.(1.7‘)(“; w).

4. Special Cases and the Variance-Covariance Matrix

In this secdon we consider some special cases of the results of Theorem 1.
First, we give two useful svmmetry properties. As we have shown in
theorem 1,

Sij(aa(-‘) hm Ef ]] (Q “})] (24)

sc that
. 1
Silesw) = Jim =BT @)X (o - )] )

From equation (25), and using the fact that the z,(¢) are real-valueq, we
can deduce the following symmetry properties:

Sijl;a—w) = Sp(aw), (26)
Spi(aw) Sij(—o; ~w). 27

I

Next we consider some important cases of equation (23). By setting i = § =
k = [ and using equation (26) in equation (23), we obtain the univaiate
results of Dandawate and Giannakis {compare with Dandawate [1,2]),

Aim cov{ I (@ w), I (B 1)} = Sulw ~ i3 —p)Sula — w + = Bip — B)
+ Si(w+u—Biu—0)Si(la—w— pu;—p). (28)

Another important case that may be obtained from equation (23) is the
covariance of the conventional cross-periodogram for stationary processes.
From equation (23), we have

M k‘) . Q. [ . Q § . N
A cm;{[,-(j )(O,u‘ Ly (Gsw) = Sik(0;w)S50(0; —w) + Su2w; w) Sie(—2w; —w). (29)

TU




) : .““.. '-'.v b n . ‘! : a’ L
Note that, tor stationary processes. S, (0. w) = 0 for o = 0. In this case )
equation (29) reduces to :
) : 0;w), w# 0,7 s
lim cor . 0;), 0 w)) - [ Sl ,"( ' ' . S
, i corthy O 0} = 00 55000+ (0 S (00). @ = 0,4 (0 oy
This expression can be found. for example, in Priesty [6, chapt. 91 A
For periodically correlated (PC) processes we are restricted to the set of
cyele frequencies given by a € {27/} for k=01, ..., T~ 1. Using
(23), this leads 1o
. 2k -ﬂ}c Sl @) SO o = W), WF -
opt [ 2k * 3 . ' i »
7“'&’ U g ' “). Iy b { S0, w)8, (0 a — w) + 5‘,,(;’.&&_1;“* ;m)SJk(l_"L;;'_'ﬂ;%:i——m)_ we T .
(31)
for 22 integer.
' To complete our results on the covariance of 1})'” (a;w), we derive 1ts
. variance-covariance mairix. From ¢ juation (23) it follows casily that h
71im cov{[‘-(J'- Negw), I @y )} = Si(0:w) S a0 - w) + Si(2w - o w)Sikla — 2w a — w). ,
» — 0 L] -
\ (32) '
We now consider some cases of equation (32). -
Setting ¢ = k and 7 = [ and using the symmetry properties given by equa-
tions (26) and (27), we obtain the following expression for the asymptotic
,. variance of the cyclic cross-periodogram,
var{]ij)(a; w)} & Sul0:w)S;;(0; @ — w) + |5, 2w — asw). (3)
Setiing 7 = jand k = { yields the covariance between two cyclic auto- B
periodograms,
cm.x{],—(i’f‘)(a; w), IJ( a;w)} = 85 (0;w) S50 a — w) + S5 (2w — @ w) S5 (2w — o5 w). (34) )
NS With i = j = k = [ we obtain the variance of a cyclic auto-periodogram,
var {I (o w)} = 8.,(0;0) S0 (U @ — w) + 185 (2w — aw)]?. (35) G

11




We summarize these results

as foliows.

Al

in the asymptotic variance-covariance matrix

b

- ' r (7
e i) ey 1
:“‘”‘\u. - £,(0.038, (0o w) S, (w8 (e W S0 S, (Oie W) 8,008 (O e - w)
+ 18620 - are)? + 82 - aid8? (2 - el Sy (B = @IS, Qe aie) S, (e - @iw)S) (2w - i)
ISR IPR S0 W)€, (0; 3 S e S 08 ) TR TR ) S (05 )8, (0 3y
vy w 50w ;_,_( ja W S0t .k).J_,(.;. e Sl ,.A-._U(,,a - .”( ,u.“(.n w
A AL S © S (e oren? $EL @ ew) S Qe aw) 1 SR aiw)S) (e - aiw)
I(T‘m‘..-) 5, (0,615, (0,0 - w) 0,8 (Uia W) T (0w 5 (0a W) 5,(0,)5, (00 - «)
PSR S an) s S (e a)S ) (T e LS e - e )il - 8, (e - @S (2 - e
(‘” )] @ (0; WIS, (0 B K0G8, (0 )] S, (5 WIS, (0 ) 50,08, (0
” ) S 08 (Oia S 00S e w L_,,(.,\.»»U-( oW .”(.,“_L“(.a—u)
A e B N A C IR T BRI N C R TR LAY MR + 85 - aze)?

5. Smoothed Cyclic Cross-Periodogram

(36)

It is well known, for the case of stationary processes, that the periodogram
leads to inconsistent estimates. Consisten: estimates are obtained by
convolving the pericdogram with a spectral window, which amunts to
performing local averaging. The choice of window allows the user to
perform a bias/variance radeoff in the resulting estimate. In our case, as

. . . . 4
we have seen inTheorem 1. the cyclic cross-periodogram ]‘-‘,.T

)(a; w) is an

inconsistent estimator of the cyclic cross-spectrum S; (a2 w). As shown by
Dandaware and Giannakis [1,2], smoothing of the cyclic periodogram
resuits in consistent estimates of the cyclic (auto)-spectrum. Here we
extend the idea to the cyclic cross-spectrum with the same resulss.

Consider the smoothed cyclic cross-periodogram estimate of the cyclic
cross-spectrum given by

Sm(a w) =

1 T-1

ZI

(e ﬂl)w @) () ~ 3%'5

) (37)

The spectral window WD(w) obeys certain well known properties. e.g.,

see Brillinger |

Assumption

3

Wi(w}) is an even, real-valued function satisfying

[muf( Y = 1, / W (w)|dw < 0.

3, chapt. 5]. These are briefly outlined next in Assumption 3

(38)

The spectral window weighting function WD (w) is constructed from W{w) as

1/ (M (w) =

;1 1
_1/{'
e Br

(B! (w +2mn)) ,

(39)




’ where Bris a sequence tor 7=1,2, ..., with B;>0, By-- 0, and
e BT — ocoas T — oo.

We now present a theorem that describes the asymptotic behavior of
S(T) (a; w) » given by equation (37), demonstrating its consistency and

" ‘ asymptotlc normality.
: Theorem 2
Suppose X(t) is cyclostaticnary with zero mean as defined in section 2.
Under Assumptions 1 through 3, then
t-;' Tl‘_{{}o S( (ow) = Sy (g w), (40)
\ and
i Jim By Teov! S (0 w), 550 (es )} = Jim Ewcov{T (asw). 1) (05 1)}, )

where &£, / \W (r)[*dr is the window energy and the cyclic cross-
periodogram covariance is given in Theorem 1. Also, the resulting cyclic
spectrum estimate is asymptotically normally distributed.

6. Conclusions

Theorem 2 is the main result of this report and is useful for a number of
reasons. The finite Fourier transform X(M(w), as defined by equation (5),
can be evaluated using the FIFT algorithm for composite record length 7,
$0 1( M w) can be readily obtained. The smoothing step necessary to
oblam 5(1)((1 w) via equetion (37) is a straightforward local averaging
procedure. Thus, the smoothed cyclic cross-periodogram estimate of the
cyclic rross-spectrum can be readily computed.

R ‘The asymptotic variance expression of theorem 1, combined with the

: asymplotic normality of the estimate, allows for asymptotically optimal
. criteria to be developed for a variety of detection and estimation schemes.
For example, one can develop optimal detection tests for the presence ol

) cyclostationary behavior and estimate the cycle frequencies [9]. Finally,
e we note that the cross-spectruin and cros-correlation play a prunary role
" in mnulti-sensor detection and estimation problems. IFor exampie, the time
difference of arrval between sensors can be used G estimate the angle of
arrival of a signal, & concept that easily extends to cyclostationary signals.
Thus, the results of this report will prove useful in analysis of such multi-

sensor cyclostationary signal processing scenarios.
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Appendix.—Proofs
Proof of Lemma 1

Using equation (12) in the left-hand side of equation (18) yields

| (T-1) (T-1)
5 - - . . > 1Tt twe o 1 T
Say, ok (LWL, ooy Wheo) — Z L Cay, o (BT Ty ) Hwrn Wi 1Tk 1)
n=-(T-1)  my==(T-1)

< Z Z ICay i b3 T1ery Thet)]
[T |>T Te—1 [>T
- |71l 4+ 4 T
DI = [Car,an (5 T15 -+ 7o)l = O(T Y,
|T1|>’l‘ ITk_1|>T

(42)
where the equality in the last line follows after applying Assumption 1a.0

Proof of Corollary 1

Corollary 1 follows imniediately from Lemma 1 with k = 2, a; = ¢, and

Proof of Lernma 2

Using equation (5) and the mulilinearity property of cumulints [3, eq
{4.7)} we have

cum{ X (w,), ,X,SP(Wk)}

=1 -1
Z o Z cum{za, (1), -, Ta, "l(tk_])}C—J(ultw...wkzk)_ (43)

t; =0 L1 =0

Using the assignments ¢ =14, Ty =& — 4, o= by~ L o ooy Ty S L) — L

and A = X0, w; , We can rewrite equation (43) as
cum{X((lf)(w]) X,(‘i)(wk),
-1 T-1 T-1
= z L Z Cu”_.'ak([;,“,.  The 1)( JA oy (Wit -+w~_11k~1), (44)

t=0 t47,=0 41 =0

where we have madc use of equations (8) and (10). Now, letting ¢, =
—min(Ty, ..., Ty, 0), and £y SN A max(ry, . . ., Tg_p, ), then we may
write,

cum{ X (@), -+, XD (i)}
T -1

= Z 2‘ Z J\l L STL, e T 1)(, = {wrTibe Wi Th- 1) (45)

= (T-1) 7 y—=(T 1)t ta
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for O <t <t. <7 1 If this last inequality s net satisfied then the hmits
of the summation arc taken to be the empty st

lt may be shown that [ 3]

t 71
N ., M T I\ )
Lc. }_‘( - (461
(=ta t=0

where /8, < |~|[jr,i + - - - + I7e-,|]. with ~ a constant. Using this

and the Fourier relation

s _E o { e om . at
Cal,"-,ak(ta Ty """ 17—}:—1) - L‘a),m.ak G Ty, Ilt—l)(:J 3
a

(47)
allows us to write,
T
C'U/TTL{X‘SL )(wl)7 B X((LZ)(W’C)}
T-1 . T-1 'I_'—_l v
= Zc‘-’“" Z ... }_‘ c‘](“)lTl+“'+’"k‘17k--l)cal,___’ak (t; 70, ) Te-1)
t=0 n=—(T-1) T =~(T-1)
(48)

7-1 T-1
—Ilr Z U Z Z Call--.,ak(a; Ti, ,'Tk__])-

ni=—(T~1) Teo1=~(T-1) &

The second term on the right hand side of equation (48) is bounded, as we
show next. First, use equation (47) with £ = 0 in the second term of equa-
tion (4%), and then note that the result is less than or equal to

T-1 T--1
2 o 2 Iml e el lcay w0571, ko) (19)
T1=—(’I'—-l) Tk_1=—(T—-l)
by a»plying Assumption la. Thus the second term of equation (48) is
bouuded as follows:
T-1 T-1
]{fr Z e Z ZCal,---,ak(a; Ti, aTk—l)
T1=»-(_T-'1) Tk_ll'-—(_T—l) a
& = - (50)
< Z L “’T1| +-- +|Tk—-1” Ca1,---,ak(0; Tiy- 7Tk—1) = O(l)’ '
n=-(T-1)  me_1==(T-1)
and we can rewrite equation (48) as
cum{Xg) (wy), - - ,Xg:) (wi)}
T-1 T-1 T-1 _
- Z e~ iM Z Z e*—](wlTl'Hﬂk—lrk—l)caly_”,ak (t; 7y, - 77'}:—1) + O(l). (51)
t=0 n=—(T-1) 7ey=—(T=1)
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The result follows by using Lerama | in equanion (51).0 o
B Proof of Corollary 2

Thas result follows immediately from Lemma 2 with & = 2, ¢, =1, and oo
. ;= J.0) s

Proof of Theorem 1

First we show that [,(J.T)(a; w) is an asymptotically unbiased estimator of

+ S5,,(a; w). Taking the expectation of the cyclic cross-periedograra yielas

E[I(7 (a; w)]

'gM'

Z t)z,( (1 ]e—Jwt —jla-w)s (52)

Next we employ sibstitutions sirnilar to those used in the proof of Lernoma

2. LletTt=s~t t,=-min(7,0), and t, =T - 1 — max(r, 0), leading tv
| (’[‘) 1 ty ot T-1
f . — " oI (. —jwT
E[Iij (a1w)] - T t% € '-%_I)Cu(t)ﬁr)e . (53)
’ /! Now, using Corellary 1, we obtain, f :"'5.";
E[I,-(J-T)(a;w)] = - L gIot {sukt w) + O(T‘l)]
t ta
= Ly e+ o), (54
: =0

That [i(}‘) (a; w) 1s asymptotically unbiased is confirmed by taking the
limit of equation {54) as T — oo, which results in Sij(a; w).

Next we develop an expression for the asymptotic covariance of
e I; (T)( (a; w). A theorem of Brillinger [2, theorem 2 3.2], based cn a previ-
[ ous result of Leonov and Shiryacev, provides a general method for express-
ing a joint cumulant as a sumn of cumulants. Using this, we can express the
covariance of the cyclic cross periodogram as,

cou{I§ (o w), 1§ (B 1)} = cum{ XD ()X (a —~w), X (=X (u - B)}
= _Lcum{xf @), XV (a = w), X (), X P~ B)}

N 77
1 . .
+ meurn{ X{ W), X (1)} cum{ %] (o~ w), X{ (u ~ )}
N - 1 ) . , ) .
+ meun{ X W), X{ (- B} cum{ X[ (@~ w), XD (=)},
(85)
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where we have made use of the fact that cov{z, y} = cum{zx, u*) {2].
Using Lemma 2 and Corollary 2 in equation (§5) yields

ogw), 1Y (8; 1)
1 T-1
Z Siju(t,w,a - w, —ju)e @B

=y
o

1

1 i 1 T—1
+ [—1- > S,-k(t;w)e"(“’“)‘} [— > Sultia— w)e"J("‘“’+“‘5)‘]
T = ; (56)
1 T-1 _
+ [-7: Su(t;w)e’““’*“‘ﬁ)’] [ ZS,k Lo — w)e e “)’jl +O(T™h).
t=0
By assumption, S,,,(Q; wy, u;, w,) exists and is finite. Therefore, the first
term of equation (56) goes to zero as I — oo, and we are left with
I N eqw), I (B1)) = —whp-Ba-
Hm cov{l;; (aw), I (B )} = Sulw — pw)Sula —w+p - Fia-w)

4+ Sulw+p— Giw)Skla—w—uya-w). g (57)

Proof of Theorem 2

The proof of Theorem 2 is somewhat lengthy, but it follows along the lines
of Dandawate’s Thearems 2.3.3 and 2.3.5. For this reason we omit the
detailed proof here. The proof of equadons (40) and (41) follows by
generalizing Dandawate’s Theoremn 2.3.3 to the cross-periodogram case.
Proof of the asymptotic normality can be achieved by showing that the
highier order (k > 2) cumulants of the estimate vanish asymptotically, as in
Dandawate’s Theorem 2.3.5.0
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